Компонент ОПОП 11.05.01 Радиоэлектронные системы и комплексы Специализация Радиоэлектронные системы управления и передачи информации наименование ОПОП

Б1.О.15

РАБОЧАЯ ПРОГРАММА

Дисциплины (модуля)	Электродинамика и распространение радиоволн
Разработчик (и): Гомонов А.Д., доцент, к.т.н.	Утверждено на заседании кафедры
	Л.Ф. Борисова

Мурманск 2024

Пояснительная записка

Объем дисциплины <u>8 з.е.</u> **1. Результаты обучения по дисциплине (модулю)**, соотнесенные с индикаторами достижения компетенций, установленными образовательной программой

Компетенции	Индикаторы	Результаты обучения			
	достижения	по дисциплине (модулю)			
	компетенций				
УК -1	УК-1 ид-1	Знать:			
Способен осуществлять	Применяет системный подход	- основные уравнения			
критический анализ	в поисковой и аналитической	электродинамики: уравнения Максвелла в интегральной и			
проблемных ситуаций	деятельности для решения	дифференциальной форме, среды			
на основе системного	поставленных задач	распространения, волновое уравнение,			
подхода, вырабатывать стратегию действий	УК-1 _{ИД-2} Осуществляет сбор,	граничные условия;			
стратегию деиствии	систематизацию и критический	- излучение и распространение			
	анализ информации,	электромагнитных волн: вакуум,			
	необходимой для выработки	изотропные и гиротропные среды,			
	стратегии действий по	однородные и неоднородные среды, равновесные и неравновесные среды;			
	разрешению проблемной	- электромагнитные волны в			
	ситуации	направляющих системах: виды			
ОПК-1	ОПК-1 ид-1	направляющих систем, собственные			
Способен использовать	Знает основные законы	волны в прямоугольных и круглых			
основные законы	математики, единицы измерения,	волноводах, поверхностные волны,			
математики, единицы	фундаментальные принципы и	особенности распространения волн в микрополосковых, щелевых и			
измерения,	теоретические основы физики,	квазиоптических системах, связь и			
фундаментальные	теоретической механики;	возбуждение направляющих систем,			
принципы и	ОПК-1 ид-2	потери энергии;			
теоретические основы	Умеет использовать основные	- электромагнитные колебания в			
физики, теоретической	законы математики, единицы	объёмных резонаторах: резонаторы			
механики	измерения, фундаментальные	простой формы, собственная добротность резонаторов;			
	принципы и теоретические	- дифракционный метод Кирхгофа и			
	основы физики, теоретической	излучение электромагнитных волн			
THC 1	механики;	различными источниками;			
ПК-1 Способен обеспечивать	ПК-1 ид-1	- законы распространения			
	Знает условия возникновения аварий и обеспечения радиосвязи	электромагнитных волн над			
радиосвязь при авариях, включая частичный или	при авариях, включая частичный	поверхностью Земли, в атмосфере и ионосфере			
полный выход из строя	или полный выход из строя	Уметь:			
радиоустановок.	радиоустановок.	- использовать уравнения Максвелла и			
puminosom	ИД-2 _{ПК-1}	их следствия в теоретических и			
	Умеет обеспечить радиосвязь	практических исследованиях;			
	при авариях, включая частичный	- составлять и решать уравнения			
	или полный выход из строя	электродинамики при заданных			
	радиоустановок.	начальных и граничных условиях, характерных для радиофизических			
		задач;			
		- пользоваться ПО для расчета задач			
		электродинамики.			
		Владеть:			
		- навыками составления и решения			
		уравнений электродинамики при			
		заданных начальных и граничных условиях, характерных для			
		радиофизических задач;			
		- навыками экспериментальной			
		проверки решений простейших			
		электродинамических задач;			
		- навыками пользования ПО при			
		решении электродинамических задач.			

2. Содержание дисциплины (модуля)

- Тема 1. Основные положения теории электромагнетизма.
- Тема 2. Граничные условия для векторов электромагнитного поля.
- Тема 3. Плоские электромагнитные волны.
- **Тема4.** Поляризация электромагнитных волн. Падение плоских электромагнитных волн на границу раздела двух сред.
- **Тема 5.** Элементарные излучатели.
- Тема 6. Направляемые электромагнитные волны.
- Тема 7. Металлические волноводы. Объемные резонаторы.
- Тема 8. Распространение электромагнитных волн в анизотропной среде.

3. Перечень учебно-методического обеспечения дисциплины (модуля)

- мультимедийные презентационные материалы по дисциплине (модулю) представлены в электронном курсе в ЭИОС МАУ;
- методические указания к выполнению лабораторных/практических/контрольных работ представлены в электронном курсе в ЭИОС МАУ;
- методические материалы для обучающихся по освоению дисциплины (модуля) представлены на официальном сайте МАУ в разделе «Информация по образовательным программам, в том числе адаптированным».
- 1. Методические указания к самостоятельной работе по дисциплине «Электродинамика и распространение радиоволн».
- 2. Методические указания к выполнению расчетно-графической работы по дисциплине «Электродинамика и распространение радиоволн».
- 3. Методические указания к выполнению курсовой работы по дисциплине «Электродинамика и распространение радиоволн».

4. Фонд оценочных средств по дисциплине (модулю)

Является отдельным компонентом образовательной программы, разработан в форме отдельного документа, представлен на официальном сайте МАУ в разделе «Информация по образовательным программам, в том числе адаптированным». ФОС включает в себя:

- перечень компетенций с указанием этапов их формирования в процессе освоения дисциплины (модуля);
 - задания текущего контроля;
 - задания промежуточной аттестации;
 - задания внутренней оценки качества образования.
- **5.** Перечень основной и дополнительной учебной литературы (печатные издания, электронные учебные издания и (или) ресурсы электронно-библиотечных систем)

Основная литература

- 1. Мандель, А.Е. Распространение радиоволн [Электронный ресурс]: учебное пособие/ Мандель А.Е., Замотринский В.А.— Электрон. текстовые данные.— Томск: Томский государственный университет систем управления и радиоэлектроники, 2012.— 163 с.— Режим доступа: http://www.iprbookshop.ru/13969.html.— ЭБС «IPRbooks»
- 2. Электродинамика и распространение радиоволн [Электронный ресурс]: учебное пособие/ Д.Ю. Муромцев [и др.].— Электрон. текстовые данные.— Тамбов: Тамбовский государ-ственный технический университет, ЭБС АСВ, 2012.— 200 с.— Режим доступа: http://www.iprbookshop.ru/63924.html.— ЭБС «IPRbooks»
- 3. Яковлев, О. И. Распространение радиоволн / О. И. Яковлев, В.П. Якубов. Учебник. М.: ЛЕНИЗДАТ. 2009.

Дополнительная литература

- 1. Фальковский, О. И. Техническая электродинамика: учебник для вузов / О. И. Фальков-ский. Изд. 2-е, стер. Санкт-Петербург [и др.]: Лань, 2009. 429, [1] с.: ил. (Учебники для вузов. Специальная литература). Библиогр.: с. 423-424. ISBN 978-5-8114-0980-8: 389-40; 405-79.
- 2. Боков, Л.А. Электродинамика и распространение радиоволн [Электронный ресурс]: учеб-ное пособие/ Боков Л.А., Замотринский В.А., Мандель А.Е.— Электрон. текстовые дан-ные.— Томск: Томский государственный университет систем управления и радиоэлектро-ники, 2013.— 410 с.— Режим доступа: http://www.iprbookshop.ru/72050.html.— ЭБС «IPRbooks»

6. Профессиональные базы данных и информационные справочные системы

- 1. http://lib.mstu.edu
- 2. https://e.lanbook.com
- 3. http://www.iprbookshop.ru

7. Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства

- 1) Офисный пакет Microsoft Office 2007
- 2) Система оптического распознавания текста ABBYY FineReader
- 3) MatLab 2020

8. Обеспечение освоения дисциплины лиц с инвалидностью и ОВЗ

Обучающиеся из числа инвалидов и лиц с OB3 обеспечиваются печатными и (или) электронными образовательными ресурсами в формах, адаптированных к ограничениям их здоровья.

9. Материально-техническое обеспечение дисциплины (модуля)

	That chairbing texin techoe obecine	
№	Наименование оборудованных	Перечень оборудования и технических
п./п.	учебных кабинетов, лабораторий	средств обучения
1.	512 В «Лаборатория	Количество столов - 12
	электродинамики и	Количество стульев - 24
	распространения радиоволн»	Посадочных мест - 24
	Учебная аудитория для проведения	Доска аудиторная - 1
	занятий лекционного типа,	
	практических и лабораторных	Комплект для проведения лабораторных
	занятий, групповых и	работ по электродинамике: «Поляризация
	индивидуальных консультаций,	плоских волн» - 1 шт.,
	текущего контроля, промежуточной	Комплект для проведения лабораторных
	аттестации.	работ по электродинамике «Отражение
		плоских волн», - 1 шт.,
		Комплект для проведения лабораторных
		работ по электродинамике
		«Электромагнитные поля в волноводах», - 1
		шт.,
		Комплект для проведения лабораторных
		работ по электродинамике «Излучение
		элементарных источников» - 1 шт.,
		Комплект для проведения лабораторных
		работ по электродинамике
		«Электромагнитные волны в анизотропных
		средах» - 1 шт., Учебные макеты антенн - 4
		шт.,
		Учебный макет генератора Г4-76А, - 1 шт.,
		Учебный макет Измерительного приемника
		RFT SMV 8.5 - 1 шт.

10. Распределение трудоемкости по видам учебной деятельности

Таблица 1 - Распределение трудоемкости

Вид учебной			Pacı	пределен	_	•		и дисци бучения		ы (мо)	цуля)		
деятельности		(Очна	Я		Очно-заочная				Заочная			
	Семестр			Всего часов	Семестр			Всего часов	Семестр/Курс			Всего часов	
	5	6	-						/3	/3	-		
Лекции	26	26	-	52	-	-	-	-	4	4	-	8	
Практические занятия	-	-	-	-	-	-	-	-	=	-	-	-	
Лабораторные работы	16	16	-	32	-	-	-	-	6	8	-	14	
Самостоятельная работа	72	36	-	108	-	-	-	-	98	123	-	221	
Подготовка к промежуточной аттестации	-	36	-	36	-	-	-	-	-	9	-	9	
Всего часов по дисциплине	12 6	12 6	-	252	-	-	-	-	108	144	-	252	
/ из них в форме практической подготовки													

Формы промежуточной аттестации и текущего контроля

	4 ob	MDI III	OWICH	tyro mon	ullee	тации	i ii i ci	хущего к	onipo	7171		
Экзамен	-	+	1	+	-	-	-	-	-	+	-	+
Зачет/зачет с	+	-	-	+	-	-	-	-	+	-	-	+
оценкой												
Курсовая	-	+	-	+	-	-	-	-	-	+	-	+
работа												
(проект)												
Количество	1	-	1	1	-	-	-	-	-	-	-	-
расчетно-												
графических												
работ												
Количество	-	-	-	-	-	-	-	-	1	-	-	1
контрольных												
работ												
Количество	-	-	-	-	-	-	-	-	-	-	-	-
рефератов												
Количество	-	-	-	-	-	-	-	-	-	-	-	-
эссе												

Перечень лабораторных работ по формам обучения

№	Темы лабораторных работ
п/п	
1	2
	Очная форма
1.	Электромагнитное поле. Электромагнитные свойства сред. Электромагнитное поле на границе раздела двух сред
2.	Поляризация плоских волн
3.	Отражение и преломление плоских волн
4.	Излучение элементарных источников
5.	Элементарный щелевой излучатель
6.	Распространение волн у поверхности Земли. Траектория радиоволн в ионосфере
7.	Направляемые волны
8.	Волноводы. Электромагнитные поля в волноводах
9.	Возбуждение электромагнитных колебаний в направляемых системах
10.	Электромагнитные волны в анизотропных средах
	Заочная форма
1.	Электромагнитное поле. Электромагнитные свойства сред. Электромагнитное поле на границе раздела двух сред
2.	Поляризация плоских волн
3.	Отражение и преломление плоских волн
4.	Излучение элементарных источников
5.	Элементарный щелевой излучатель
6.	Распространение волн у поверхности Земли. Траектория радиоволн в ионосфере
7.	Направляемые волны
8.	Волноводы. Электромагнитные поля в волноводах
9.	Возбуждение электромагнитных колебаний в направляемых системах
10.	Электромагнитные волны в анизотропных средах

Перечень практических занятий по формам обучения

№ п\п	Темы практических занятий
1	2
	Очная форма
1.	Элементы векторного анализа. Понятие электромагнитного поля. Виды сред. Электромагнитные свойства сред. Система уравнений электродинамики в дифференциальной и интегральной формах. Закон сохранения заряда. Теорема Гаусса. Закон электромагнитной индукции.
2.	Граничные условия для векторов электромагнитного поля на границе раздела двух сред. Граничные условия для идеального проводника. Энергия электромагнитного поля. Вектор Пойнтинга. Уравнения Максвелла для монохроматического поля сторонние токи и сторонние заряды. Волновые уравнения.
3.	Электродинамические потенциалы. Вектор Герца. Плоские волны. Распространение плоских волн в средах с потерями. Фазовая и групповая скорости, волновое число и постоянная затухания плоских волн. Волны в проводнике. Скин слой.
4.	Поляризация электромагнитных волн. Стоячие волны. Распространение волн в плазме. Волновые явления на границе раздела двух сред. Формула Френеля для плоских электромагнитных волн с вертикальной и горизонтальной поляризацией. Явление полного преломления и полного отражения.
5.	Излучение элементарных источников. Элементарный электрический. Вибратор (диполь) Герца. Поле излучения элементарного электрического вибратора. Мощность и сопротивление излучения. Принцип перестановочной двойственности. Элементарный магнитный вибратор. Диаграмма направленности излучателя. Мощность излучения. Элементарный щелевой излучатель. Принцип эквивалентности. Элемент Гюйгенса. Лемма Лоренца

- 6. Распространение волн в неоднородных средах. Уравнение эйконала. Геометрическая оптика слоисто-неоднородной среды. Распространение волн у поверхности Земли. Траектории радиоволн в ионосфере.
- 7. Направляемые волны. Связь между продольными и поперечными составляющими полей в однородной направляемой системе. Критическая частота. Длина волны в направляющей системе. Поперечные ТЕМ волны. Электрические Е и магнитные Н типы волн в направляющих системах. Концепция парциальных волн Бриллуэна. Групповая и фазовая скорости волн в направляющих системах. Мощность, переносимая электромагнитной волной по линии передачи.
- 8. Прямоугольный волновод. Структура электромагнитного поля волны H10 в прямоугольном волноводе. Вырожденные волны. Круглый волновод. Структура волны E01 в круглом волноводе. Основные типы волн в прямоугольном и круглом волноводах. Токи на стенках волноводов. Волны в коаксиальной линии.
- 9. Передача электромагнитной энергии по направляемым системам. Предельная и допустимая мощности. Коэффициент затухания. Передача энергии по прямоугольному волноводу. Затухание электрических и магнитных волн. Передача энергии по круглому волноводу. Передача энергии по коаксиальной линии. Объёмные резонаторы. Добротность резонаторов. Классификация колебаний в объёмных резонаторах.
- 10. Прямоугольный резонатор. Коаксиальный резонатор. Добротность коаксиального резонатора. Цилиндрический резонатор. Элементы линий передач. Диафрагмы. Отверстия связи. Направленные ответвители. Аттенюаторы. Возбуждение электромагнитных колебаний в направляемых системах. Возбуждение штырем и рамкой с током.
- 11. Поверхностные волны и замедляющие системы. Ферритовые устройства СВЧ. Распространение волн в ферритах. Эффекты Фарадея и Коттон-Мутона. Вентили. Циркуляторы, использующие эффект Фарадея.

Заочная форма

- 1. Элементы векторного анализа. Понятие электромагнитного поля. Виды сред. Электромагнитные свойства сред. Система уравнений электродинамики в дифференциальной и интегральной формах. Закон сохранения заряда. Теорема Гаусса. Закон электромагнитной индукции.
- 2. Граничные условия для векторов электромагнитного поля на границе раздела двух сред. Граничные условия для идеального проводника. Энергия электромагнитного поля. Вектор Пойнтинга. Уравнения Максвелла для монохроматического поля сторонние токи и сторонние заряды. Волновые уравнения.
- 3. Электродинамические потенциалы. Вектор Герца. Плоские волны. Распространение плоских волн в средах с потерями. Фазовая и групповая скорости, волновое число и постоянная затухания плоских волн. Волны в проводнике. Скин слой.
- 4. Поляризация электромагнитных волн. Стоячие волны. Распространение волн в плазме. Волновые явления на границе раздела двух сред. Формула Френеля для плоских электромагнитных волн с вертикальной и горизонтальной поляризацией. Явление полного преломления и полного отражения.
- 5. Излучение элементарных источников. Элементарный электрический. Вибратор (диполь) Герца. Поле излучения элементарного электрического вибратора. Мощность и сопротивление излучения. Принцип перестановочной двойственности. Элементарный магнитный вибратор. Диаграмма направленности излучателя. Мощность излучения. Элементарный щелевой излучатель. Принцип эквивалентности. Элемент Гюйгенса. Лемма Лоренца.
- 6. Распространение волн в неоднородных средах. Уравнение эйконала. Геометрическая оптика слоистонеоднородной среды. Распространение волн у поверхности Земли. Траектории радиоволн в ионосфере.
- 7. Направляемые волны. Связь между продольными и поперечными составляющими полей в однородной направляемой системе. Критическая частота. Длина волны в направляющей системе. Поперечные ТЕМ волны. Электрические Е и магнитные Н типы волн в направляющих системах. Концепция парциальных волн Бриллуэна. Групповая и фазовая скорости волн в направляющих системах. Мощность, переносимая электромагнитной волной по линии передачи.
- 8. Прямоугольный волновод. Структура электромагнитного поля волны H10 в прямоугольном волноводе. Вырожденные волны. Круглый волновод. Структура волны E01 в круглом волноводе. Основные типы волн в прямоугольном и круглом волноводах. Токи на стенках волноводов. Волны в коаксиальной линии.
- 9. Передача электромагнитной энергии по направляемым системам. Предельная и допустимая мощности. Коэффициент затухания. Передача энергии по прямоугольному волноводу. Затухание электрических и магнитных волн. Передача энергии по круглому волноводу. Передача энергии по коаксиальной линии. Объёмные резонаторы. Добротность резонаторов. Классификация колебаний в объёмных резонаторах.
- 10. Прямоугольный резонатор. Коаксиальный резонатор. Добротность коаксиального резонатора.

	Цилиндрический резонатор. Элементы линий передач. Диафрагмы. Отверстия связи. Направленные
	ответвители. Аттенюаторы. Возбуждение электромагнитных колебаний в направляемых системах.
	Возбуждение штырем и рамкой с током.
11	Поверхностные волны и замедляющие системы. Ферритовые устройства СВЧ. Распространение волн
	в ферритах. Эффекты Фарадея и Коттон-Мутона. Вентили. Циркуляторы, использующие эффект
	Фарадея.

Перечень примерных тем курсовой работы /курсового проекта

№ п\п	Темы курсовой работы /проекта
1	2
1.	Расчет одномодового прямоугольного волновода
2.	Расчет одномодового круглого волновода
3.	Расчет одномодового коаксиального волновода
4.	Расчет одномодового оптического волновода
5.	Расчет сферического резонатора